ICAEW.com works better with JavaScript enabled.
Exclusive

ICAEW 20 Principles for Good Spreadsheet Practice

Excel – escaping from cells

Author: Simon Hurst

Published: 14 Sep 2021

Exclusive content
Access to our exclusive resources is for specific groups of students, users, subscribers and members.

Principle 5 of the ICAEW 20 Principles for Good Spreadsheet Practice states that you should: "Before starting, satisfy yourself that a spreadsheet is the appropriate tool for the job". One of the most common transgressions of this principle is the use of a spreadsheet to input and manage data that would be better stored in a database application.

However, there seems to be a significant difference in how spreadsheets and databases are perceived. In general, spreadsheets are seen as a user application that pretty much anyone can have a go at, whereas databases tend to be seen as much more technically difficult and as very much preserve of IT experts rather than everyday users. As a result, users are often much more comfortable sticking with Excel rather than creating a database solution.

In the following two-part example, we will be considering the entry of some simple data and seeing how, even in a spreadsheet, a little knowledge of how best to structure data can make data entry more efficient and more reliable as well as making it much easier to create any required analyses of the data. There is certainly an argument, even in this simple example, that Principle 5 should apply but we'll be guided by Otto von Bismarck and concentrate on the art of the possible. At the very least, any increased familiarity with data structures will be extremely useful when it comes to working with Power Query within Excel.

We are going to create a very simple list of expenses with columns for the transaction date; a text description of the expense; the amount; a client code and client name and a nominal analysis code and description. It's probably fair to say that most spreadsheet users would be likely to create this as a single table.

Excel Screenshot

Without venturing too far into the realms of relational database theory, there are clearly issues with the single table approach. Assuming that lots of transactions will be incurred on behalf of the same clients and analysed to the same nominal codes, any client and nominal code information will have to be repeated over many rows. This is not only an issue of efficiency, but also one of accuracy. If we need to type in the same client name multiple times, there is an ever-increasing likelihood of inconsistencies. This could have important consequences. If we were trying to calculate the total value of expenses incurred on behalf of a particular client, it would be very easy to miss entries that had been misspelt or were otherwise inconsistent. The problem is compounded the more information that we need to hold for each client. If everything is in a single table, then we would need to enter a phone number or an email address on every row for example.

If we look at the data from more of a database than spreadsheet point of view, then we would decide that we needed one separate table to hold all our client details and another to hold our nominal account details. We would probably put our tables on separate sheets but to make it easier to see what is going on, we have included them here on the same sheet as our main expenses table:

Excel Screenshot

Having split our data across separate tables, we need to be able to recombine the information held in all of those tables in order to end up with an intelligible result. We will do this using Data Validation lists and lookup formulae.

We are going to need to identify which code and which client each row of our Expenses table relates to. For this reason, our Code table and our Client table both need a unique identifier for each row. We can then use Data Validation in the Client code and Analysis code columns of our Expenses table to allow us to select the appropriate identifier from each table using a dropdown list. The Client name and Analysis description columns use a lookup formula to return the Analysis or Client name that corresponds to the identifier chosen in the adjacent column. As David Lyford-Smith pointed out in a recent Tip of the Week looking at Data structure good practices, for all of this to work as automatically as possible, it is vital that our tables of data are set up as Excel Tables. Because Excel Tables expand automatically as rows are added, our Data Validation list source can be set up to automatically include rows added to the Code and Client Tables. In addition, Data Validation settings will be copied automatically to new rows in our Expenses Table as will the lookup formulae that retrieve the Client name and Analysis description.

We'll look at the Data Validation settings in the two code columns of our Expenses Table first. As well as helping prevent users enter the wrong sort of data in a cell, Data Validation can also be used to allow users to select entries from a list which will be displayed as a dropdown in the cell. Here is the setting for column D of our Table:

Excel Screenshot
We have set Allow: to List and set the Source: for our List to be the cells in the ID column of our Client Table: =$L$7:$L$11. Here is the Client code dropdown in action:
Excel Screenshot
There are a few idiosyncrasies in how Data Validation source lists work. As you can see from the above example, Data Validation does not use Structured Table Language. Instead of a reference to the Client[ID] column, the Source is changed to the equivalent cell reference. This is important because the Source List behaves differently depending on whether or not the source is on the same sheet as the Data Validation cell. If both are on the same sheet, the List will expand automatically in spite of the failure to use Structure Table Language. However, if the Source List is on a different sheet, although the actual reference will look exactly the same when first set up, the cell reference will not expand to include new rows. For this reason, it's a good idea to give the Table column that you want to refer to a Range Name. The Range Name will expand whichever sheet the Table is on and the Source List can be set to refer to the Range Name to ensure that the Data Validation dropdown will always include new entries. You can find more information on Excel Tables and Data Validation in our archive portal, the Keyword search word cloud includes the terms Data_Validation and Tables:
Allow Microsoft PowerBI content

This content is provided by Microsoft. We ask for your permission before anything is loaded as they place a few cookies on our site. For more information on how we handle cookies, please see our privacy policy and cookies policy. To view this content on the website, please accept and continue.

By creating our separate Tables, users no longer have to type in code or client details, with the possibility of making data entry errors in so doing, instead they just need to choose from a list.

In part 2 we will look at the use of lookup formulae to trample all over another one of our 20 Principles as well as using a recent Excel enhancement to make our dropdown lists easier to use. We will also consider some of the drawbacks of using Excel in this way.

Open AddCPD icon

Add Verified CPD Activity

Introducing AddCPD, a new way to record your CPD activities!

Log in to start using the AddCPD tool. Available only to ICAEW members.

Add this page to your CPD activity

Step 1 of 3
Download recorded
Download not recorded

Please download the related document if you wish to add this activity to your record

What time are you claiming for this activity?
Mandatory fields

Add this page to your CPD activity

Step 2 of 3
Mandatory field

Add activity to my record

Step 3 of 3
Mandatory field

Activity added

An error has occurred
Please try again

If the problem persists please contact our helpline on +44 (0)1908 248 250